我国甲醇燃料当前应用及发展前景浅析

绿醇的消费推广需要政策支持,以及资本市场对技术进行投资

■ 王慧娟

甲醇燃料是利用工业甲醇或燃料甲醇,加变性醇 添加剂,与现有国标汽柴油(或组分油)按一定体积 (或重量比)经严格科学工艺调配制成的一种新型清 洁燃料。可替代汽柴油,用于各种机动车、锅灶炉使 用。近年来,我国甲醇燃料消费量呈现逐年增加趋 势,2023年甲醇燃料在国内甲醇下游消费中的占比 近18%,是甲醇重要的消费领域。

国内甲醇供应情况


我国是甲醇产能大国,2023年甲醇产能达到 10836万吨,占全球甲醇产能的近59%。我国还是全 球最大的甲醇消费国,2023年消费甲醇8403万吨。 我国甲醇供应除了自产外,一定程度上依赖于进 口。2023年我国甲醇进口量为1455.3万吨,进口依 赖度为16%,中东是我国乃至全球的重要甲醇资源

富煤少气的能源禀赋背景下,我国甲醇生产工

艺以煤制为主,产量占比约为66%,其次是焦炉气和 天然气制,产量占比分别约为13.24%和10.7%。相 较之下,中东、美国等甲醇生产地凭借丰富的天然气 资源,多采用天然气制甲醇的生产工艺。据国际可 再生能源署的建议,甲醇按照生产原料来源可划分 为绿醇、蓝醇、灰醇和棕醇。传统灰醇主要通过煤与 天然气的重整制取合成气。二氧化碳加氢合成工艺 已十分成熟,故绿醇与灰醇在合成工艺上并无太大

区别,仅当原料二氧化碳和氢气的来源均为可再生 时,合成的甲醇方可被认定为绿醇。

目前市场上的甲醇产品多为传统灰醇,绿醇相对 较少。绿醇的生产路线可分为电解水路线、生物甲烷 路线和生物质气化路线。由于生物甲醇路线面临一 定的原料供应、传统设备升级等问题,电制甲醇有望 成为全球绿醇供应的主要方式,但当下碳捕成本仍 高、技术成熟度较低等均制约绿醇的规模化生产。

图为2022年甲醇燃料应用情况

国内甲醇燃料消费情况

甲醇是生产其他化学品的四种关键基础化学品 之一,还可以用作燃料,尤其在双碳背景下,甲醇燃 料的低碳属性成为其打开燃料市场的亮点。近年 来,国内甲醇燃料消费量呈现逐年增加趋势,2023 年甲醇燃料在国内甲醇下游消费中的占比接近 18%,是甲醇的重要消费下游。

甲醇是全球业界公认的新型清洁绿色能源之 一,甲醇燃料规模化应用具有环保性、经济性、安全 性、可行性等优势。其一,甲醇作为一种清洁低碳 的含氧液体燃料,具有燃烧高效、排放清洁的特点, 在燃料领域能够实现对传统化石能源的替代。相 较传统燃料,绿醇在生命周期评估中可将温室气体 排放量减少高达95%,实现温室气体减排,尤其在 清洁船用燃料领域的应用前景广阔。甲醇在能源 低碳绿色转型、碳中和战略中发挥着重要作用。其 二,我国甲醇制备技术成熟且产能丰富,生产成本 较低,甲醇是具有较强经济性的交通替代燃料。其 三,安全性方面,甲醇常温常压下为液态,其辛烷值 高于汽油,抗爆性更佳,使用上更为安全便捷。其 四,甲醇用于热力燃料领域的配套设备安装和改造 费用相对较低,为甲醇在热力燃料领域的替代提供 了可行性。

根据醇醚燃料专委会的数据,2022年我国甲醇 燃料消费总量达到786.3万吨。我国甲醇燃料按照 使用方向,可分为热力燃料和交通燃料两大用途,消 费占比分别为87.2%和12.8%。热力燃料可划分为 灶用甲醇燃料和锅窑炉用甲醇燃料,是国内甲醇燃 料的主要应用方向,其中灶用甲醇燃料在甲醇燃料 消费中的占比近57%、锅窑炉用甲醇燃料在甲醇燃 料消费中的占比近30%。交通燃料主要包括M100 甲醇燃料和汽油掺混燃料,二者在甲醇燃料消费中 的占比分别约为11%和2%。

从国内甲醇燃料消费地域分布来看,甲醇燃料 消费分布较为广泛,分散在全国各个地区。华中地 区甲醇燃料消费占比22%,西南地区消费占比19%, 西北、华东和华北地区各占15%,华南和东北地区各 占7%。我国甲醇消费量靠前的省份为陕西、湖北、 贵州、四川以及山西,5省的合计消费量约占全国总 消费量的38%,2022年其甲醇燃料消费量分别为77 万吨、64万吨、60万吨、54万吨和46万吨。

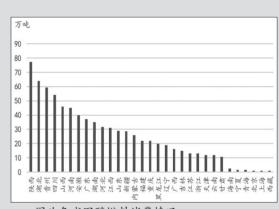
热力燃料消费情况

甲醇热力应用是甲醇或以甲醇为主要原料进行 调配,直接在特定设备上燃烧,以获得热能用于生产 和生活。根据热力燃烧使用的专用器具不同,可分 为灶用、锅炉用和窑炉用甲醇燃料。根据醇醚燃料 专委会的数据,2022年我国灶用和锅窑炉用甲醇燃 料消费量分别为452万吨和233.9万吨,分别占甲醇 燃料消费量的57.5%和29.7%。

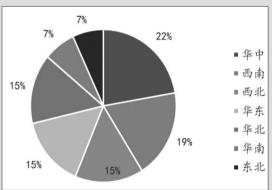
甲醇燃料不仅污染小,而且相比液化石油气更 经济。此外,甲醇燃料管线和灶具安装简单方便,相 较管道天然气省去了额外的初装费,灶用甲醇燃料 这一细分领域因此得到较好发展。2023年我国液化 石油气表观消费量为8336万吨,其中民用和商业燃 烧占比达30%,灶用甲醇燃料仍有较大的发展空间。 灶用甲醇燃料在地区分布上较广,居首位的是四川, 消费量达到50万吨;之后是湖北,消费量达到48万 吨;安徽、陕西、河南、湖南等地的消费量均超过30万 吨,同为灶用甲醇燃料的消费大省。排名前六的地 区灶用甲醇燃料消费量为223万吨,占比为50%。

甲醇作为工业锅炉燃料更具环保性,相较煤炭 可大大减少颗粒物、硫氧化物和氮氧化物的排放。 燃煤锅炉污染排放问题已经引起国家和地方政府的 重视,用甲醇燃料替代散煤用于工业锅炉已经在多 地运行。除了环保优势,甲醇锅炉本体可与柴油/天 然气锅炉本体兼容,甲醇锅炉在使用上更灵活,甲醇 锅炉装备涉及投资支出相对较小,甲醇燃料本身也 具有成本优势。根据统计数据,目前国内锅炉总数 超过60万台,年消耗原煤7亿吨,占全国煤炭消费量 的18%以上,甲醇燃料锅炉在煤炭能源替代上存在 进一步发展的空间。

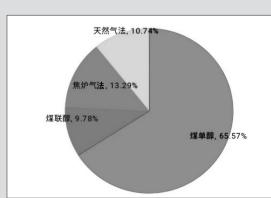
甲醇燃料在工业窑炉行业的应用也逐渐成熟。 目前将水煤气、液化石油气和天然气窑炉改造成甲 醇燃料窑炉的技术已经研发成功,且甲醇燃料窑炉 具有烧制产品质量高、烧制成本低、生产更清洁、生 产过程更安全等优势。根据中国煤炭协会的统计, 全国永久性窑炉总数超过16万台,且多为小型窑 炉,年耗煤量达2.36亿吨。当下甲醇燃料窑炉的使 用和推广处于起步阶段,随着行业技术的迭代和认 知的提高,甲醇燃料窑炉发展前景乐观。山西是国 内锅窑炉用甲醇燃料消费第一大省,甲醇年消费量 达35万吨,之后是陕西、山东,年消费量分别为28万 吨和22万吨。排名前六的地区锅窑炉用甲醇燃料 年消费总量为130万吨,占比为55%。


车用燃料消费情况

根据交通工具不同,甲醇交通燃料可分为车用 燃料和船用燃料两大方向。我国以车用燃料为主, 按照汽车分类包含专用汽车(包括乘用车和商用卡 车)燃料、改装汽车燃料。甲醇汽车由于燃料资源丰 富、配套设施建设投入少、汽车制造及使用经济等显 著优势,是实现国内石油规模替代的最有效路径之 一。近年来甲醇商用车的规模化应用使得车用甲醇 燃料消费量快速增加。2022年我国车用燃料消费量 为100.4万吨,其中M100、M85甲醇燃料和汽油掺混 甲醇燃料消费量分别为85.6万吨和14.8万吨,分别 占国内甲醇燃料消费总量的10.9%和1.9%。M100、 M85是车用甲醇燃料最主要的细分产品,目前国内 车用甲醇燃料使用以M100为主,主要集中在西部地 区,以贵州、新疆、陕西等地为主,消费量分别为33万 吨、22万吨、17万吨。


船用燃料消费情况

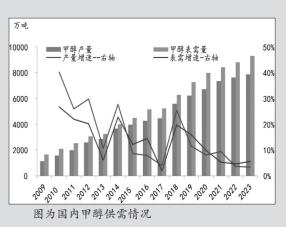
甲醇作为一种新型船舶替代燃料,具有来源广 泛充足、技术较为成熟、成本相对低廉、减排潜力巨 大等优势,尤其甲醇完全不含硫,与船舶发动机燃用 重油相比,可降低99%硫氧化物、60%氮氧化物和 95%颗粒物的排放。甲醇作为常温液体燃料,相比 液化天然气、氨和氢等更具安全性。甲醇燃料作为 船舶用清洁燃料,正在全球受到广泛的关注和重 视。世界航运巨头近年来已经布局甲醇燃料船舶领 域,包括达飞海运马士基、中远海运和HMM等。据 DNV 可替代燃料洞察平台(AFI)的最新数据,截至 2024年3月,全球已确认的甲醇燃料船舶共269艘, 在运营的33艘船舶中,25艘为油/化学品船、4艘为 集装箱船,其余236艘将于今年余下时间至2028年 交付。据统计,2023年订购的298艘替代燃料船中, 甲醇燃料船138艘,超过液化天然气船的130艘。据 国际海事组织预测,全球甲醇船舶数量将从当前的 几十艘增长至2050年的1450艘,甲醇作为船舶燃 料,其需求量也有望从当前的近50万吨增长至近


我国顺应全球航运绿色低碳发展的新趋势,加 快绿色甲醇基础设施建设,担当着甲醇燃料加注 枢纽的重要角色,未来甲醇船舶燃料将推动国内 甲醇消费更上一个台阶。2023年3月24日,马士 基与上港集团签订上海港船舶甲醇燃料项目战略 合作备忘录,拟协作实现该公司在建甲醇双动力 集装箱船舶于2024年交付后的绿醇燃料港口船对 船加注作业。2024年4月10日,我国首单绿醇船 对船同步加注作业在上海洋山港成功完成,中国 首艘、世界最大的绿醇加注船"海港致远"轮成功为 马士基 16000TEU 甲醇动力集装箱船 Astrid Maersk 轮船对船同步加注共计504吨绿醇,并实现集装箱 装卸和甲醇燃料加注同时进行。

图为各省甲醇燃料消费情况

图为国内甲醇燃料消费分布情况

图为国内甲醇生产工艺及其占比


甲醇燃料市场展望

随着我国甲醇燃料应用技术的逐渐成熟,甲醇 燃料产业链配套的政策措施、标准规范和技术保障 体系也日趋完善。我国甲醇汽车整车生产商龙头 企业的技术和规模优势明显,产业和市场集中度较 高。基于甲醇汽车技术创新水平的不断提高,我国 甲醇汽车保有量稳步增加,甲醇汽车在越来越多的 城市推广运行,未来还有较大的发展空间,进而对 甲醇燃料需求形成持续性拉动。2024年4月我国 完成首单绿醇船对船同步加注作业,未来随着甲醇 船舶数量的增长,甲醇船舶燃料的消费量也将进一

热力燃料具有环保、经济、安全和技术成熟等优 势,甲醇燃料替代散煤用于工业锅炉已在多地推行, 但甲醇燃料窑炉的使用和推广尚处于起步阶段,未 来前景乐观。民用甲醇燃料在广大农村地区具有广 阔的应用市场,未来将为新农村建设贡献力量。相 较车用甲醇燃料,甲醇热力燃料设备企业规模较小, 市场集中度偏低,规模化发展有待进一步推进。

甲醇的二氧化碳足迹因其生产和运输方式而 异。以化石为原料的甲醇,生命周期内产生的二氧 化碳要高于柴油,绿醇成为甲醇脱碳的正确路径。 但当下绿醇的大规模生产在技术工艺上仍需攻破, 绿醇的成本偏高问题还需解决,10万吨级以上规模 的绿醇合成装置尚无运行案例。行业人士认为,目 前国内生物质绿醇路线还需要进一步明确生物质来 源,并保证原料成本可控;绿电技术路线也需要降低 成本。从需求侧出发,在成本偏高的情况下,绿醇的 消费推广需要政策支持,以及资本市场对技术进行 投资,进而实现绿醇行业的持续发展。

(作者单位:广发期货)

